

#### **BHARATH INSTITUTE OF SCIENCE AND TECHNOLOGY**

No.173, Agharam Road, Selaiyur, Chennai - 600 073.

#### **BEE009 - Robotics and Automation**

Compiled by,

Dr.S.P.Vijayaragavan Associate Professor Department of EEE BIHER .

### Motivation

- Intelligent Environments are aimed at improving the inhabitants' experience and task performance
  - Automate functions in the home
  - Provide services to the inhabitants
- Decisions coming from the decision maker(s) in the environment have to be executed.
  - Decisions require actions to be performed on devices
  - Decisions are frequently not elementary device interactions but rather relatively complex commands
    - Decisions define set points or results that have to be achieved
    - Decisions can require entire tasks to be performed

### Automation and Robotics in Intelligent Environments

#### Control of the physical environment

- Automated blinds
- Thermostats and heating ducts
- Automatic doors
- Automatic room partitioning
- Personal service robots
  - House cleaning
  - Lawn mowing
  - Assistance to the elderly and handicapped
  - Office assistants
  - Security services

#### Robots

"A device with degrees of freedom that can be controlled."

- Class 1 : Manual handling device
- Class 2 : Fixed sequence robot
- Class 3 : Variable sequence robot
- Class 4 : Playback robot
- Class 5 : Numerical control robot
- Class 6 : Intelligent robot

## A Brief History of Robotics

- Mechanical Automata
  - Ancient Greece & Egypt
    - Water powered for ceremonies
  - 14<sup>th</sup> 19<sup>th</sup> century Europe
    - Clockwork driven for entertainment
- Motor driven Robots
  - 1928: First motor driven automata
  - 1961: Unimate
    - First industrial robot
  - 1967: Shakey
    - Autonomous mobile research robot
  - 1969: Stanford Arm
    - Dextrous, electric motor driven robot arm



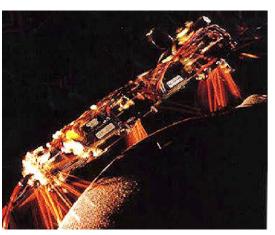
Maillardet's Automaton

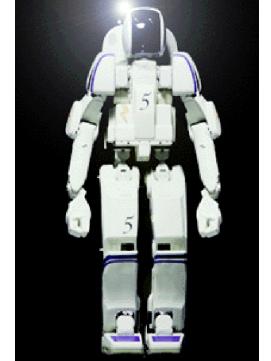


Unimate

#### Robots

#### Robot Manipulators


#### Mobile Robots




### Robots

#### Walking Robots







#### Humanoid Robots



### Autonomous Robots

- The control of autonomous robots involves a number of subtasks
  - Understanding and modeling of the mechanism
    - Kinematics, Dynamics, and Odometry
  - Reliable control of the actuators
    - Closed-loop control
  - Generation of task-specific motions
    - Path planning
  - Integration of sensors
    - Selection and interfacing of various types of sensors
  - Coping with noise and uncertainty
    - Filtering of sensor noise and actuator uncertainty
  - Creation of flexible control policies
    - Control has to deal with new situations

## **Traditional Industrial Robots**

- Traditional industrial robot control uses robot arms and largely pre-computed motions
  - Programming using "teach box"
  - Repetitive tasks
  - High speed
  - Few sensing operations
  - High precision movements
  - Pre-planned trajectories and task policies
  - No interaction with humans



### Problems

- Traditional programming techniques for industrial robots lack key capabilities necessary in intelligent environments
  - Only limited on-line sensing
  - No incorporation of uncertainty
  - No interaction with humans
  - Reliance on perfect task information
  - Complete re-programming for new tasks

### Requirements for Robots in Intelligent Environments

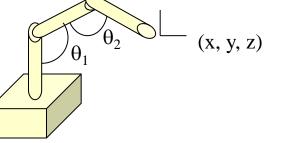
- Autonomy
  - Robots have to be capable of achieving task objectives without human input
  - Robots have to be able to make and execute their own decisions based on sensor information
- Intuitive Human-Robot Interfaces
  - Use of robots in smart homes can not require extensive user training
  - Commands to robots should be natural for inhabitants
- Adaptation
  - Robots have to be able to adjust to changes in the environment

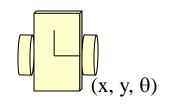
## **Robots for Intelligent Environments**

- Service Robots
  - Security guard
  - Delivery
  - Cleaning
  - Mowing
- Assistance Robots
  - Mobility
  - Services for elderly and
    People with disabilities









#### Autonomous Robot Control

- To control robots to perform tasks autonomously a number of tasks have to be addressed:
  - Modeling of robot mechanisms
    - Kinematics, Dynamics
  - Robot sensor selection
    - Active and passive proximity sensors
  - Low-level control of actuators
    - Closed-loop control
  - Control architectures
    - Traditional planning architectures
    - Behavior-based control architectures
    - Hybrid architectures

## Modeling the Robot Mechanism

 Forward kinematics describes how the robots joint angle configurations translate to locations in the world





- Inverse kinematics computes the joint angle configuration necessary to reach a particular point in space.
- Jacobians calculate how the speed and configuration of the actuators translate into velocity of the robot

#### Mobile Robot Odometry

- In mobile robots the same configuration in terms of joint angles does not identify a unique location
  - To keep track of the robot it is necessary to incrementally update the location (this process is called odometry or dead reckoning)

$$\begin{pmatrix} x \\ y \end{pmatrix}^{t+\Delta t} = \begin{pmatrix} x \\ y \end{pmatrix}^{t} + \begin{pmatrix} v_x \\ v_y \end{pmatrix} \Delta t$$

• Example: Addifferential drive robot

$$v_x = \cos(\theta) \frac{r(\dot{\phi}_L + \dot{\phi}_R)}{2}, v_y = \sin(\theta) \frac{r(\dot{\phi}_L + \dot{\phi}_R)}{2}$$
$$\varpi = \frac{r}{d} (\dot{\phi}_L - \dot{\phi}_R)$$

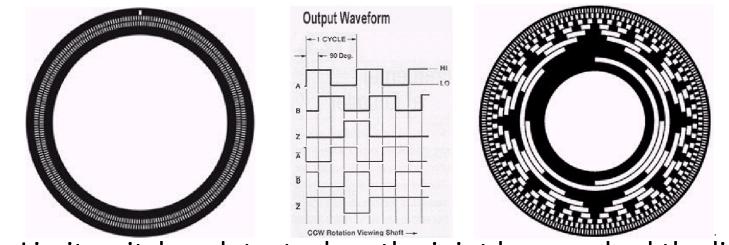
$$\phi_L ( (x, y, \theta) )$$

#### **Actuator Control**

- To get a particular robot actuator to a particular location it is important to apply the correct amount of force or torque to it.
  - Requires knowledge of the dynamics of the robot
    - Mass, inertia, friction
    - For a simplistic mobile robot: F = m a + B v
  - Frequently actuators are treated as if they were independent (i.e. as if moving one joint would not affect any of the other joints).
  - The most common control approach is PD-control (proportional, differential control)
    - For the simplistic mobile robot moving in the x direction:

$$F = K_P (x_{desired} - x_{actual}) + K_D (v_{desired} - v_{actual})$$

#### **Robot Navigation**


- Path planning addresses the task of computing a trajectory for the robot such that it reaches the desired goal without colliding with obstacles
  - Optimal paths are hard to compute in particular for robots that can not move in arbitrary directions (i.e. nonholonomic robots)
  - Shortest distance paths can be dangerous since they always graze obstacles
  - Paths for robot arms have to take into account the entire robot (not only the endeffector)

#### Sensor-Driven Robot Control

- To accurately achieve a task in an intelligent environment, a robot has to be able to react dynamically to changes ion its surrounding
  - Robots need sensors to perceive the environment
  - Most robots use a set of different sensors
    - Different sensors serve different purposes
  - Information from sensors has to be integrated into the control of the robot

#### **Robot Sensors**

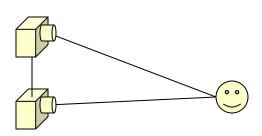
- Internal sensors to measure the robot configuration
  - Encoders measure the rotation angle of a joint



Limit switches detect when the joint has reached the limit

#### **Robot Sensors**

- Proximity sensors are used to measure the distance or location of objects in the environment. This can then be used to determine the location of the robot.
  - Infrared sensors determine the distance to an object by measuring the amount of infrared light the object reflects back to the robot
  - Ultrasonic sensors (sonars) measure the time that an ultrasonic signal takes until it returns to the robot


 Laser range finders determine dista
 measuring either the time it takes for a laser beam to be reflected back to the robot or by measuring where the laser hits the object



#### **Robot Sensors**

- Computer Vision provides robots with the capability to passively observe the environment
  - Stereo vision systems provide complete location information using triangulation





However, computer vision is very complex

Correspondence problem makes stereo vision even more difficult

## **Uncertainty in Robot Systems**

 Robot systems in intelligent environments have to deal with sensor noise and uncertainty

Sensor uncertainty

Sensor readings are imprecise and unreliable

Non-observability

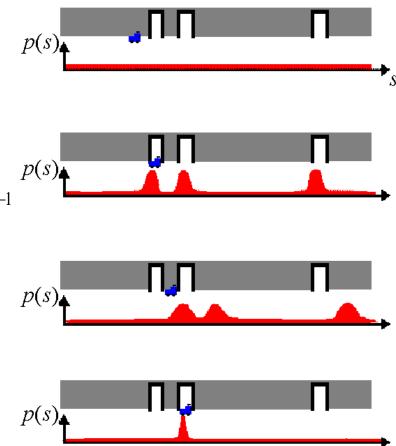
Various aspects of the environment can not be observed

The environment is initially unknown

Action uncertainty

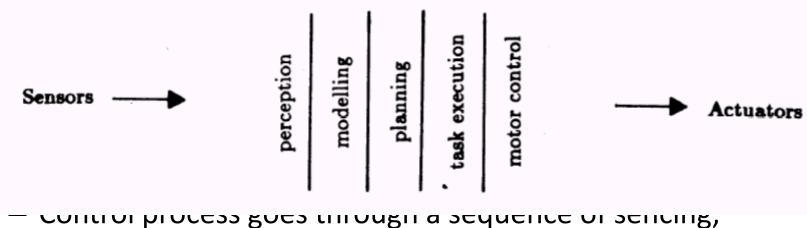
Actions can fail

Actions have nondeterministic outcomes


## **Probabilistic Robot Localization**

 Explicit reasoning about Uncertainty using Bayes filters:

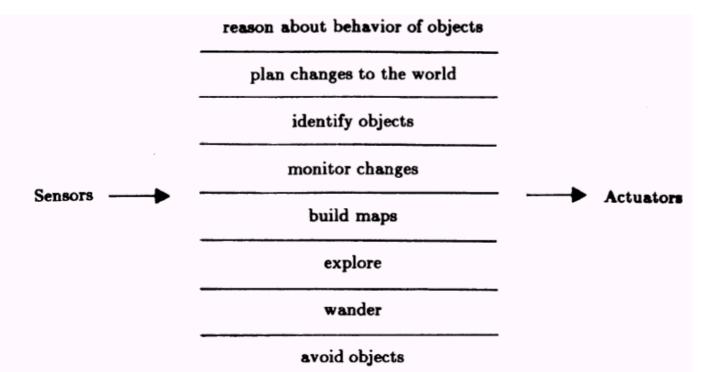
$$b(x_t) = \eta \ p(o_t | x_t) \int p(x_t | x_{t-1}, a_{t-1}) \ b(x_{t-1}) \ dx_{t-1}$$


Used for:

- Localization
- Mapping
- Model building

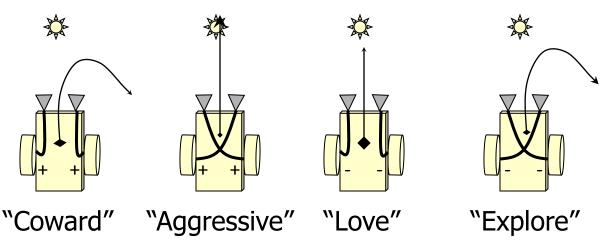


### Deliberative Robot Control Architectures


 In a deliberative control architecture the robot first plans a solution for the task by reasoning about the outcome of its actions and then executes it



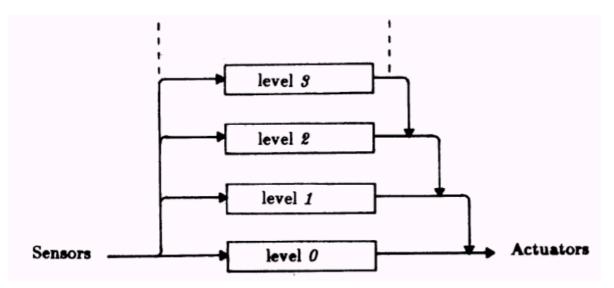
model update, and planning steps


#### Behavior-Based Robot Control Architectures

 In a behavior-based control architecture the robot's actions are determined by a set of parallel, reactive behaviors which map sensory input and state to actions.



### Complex Behavior from Simple Elements: Braitenberg Vehicles

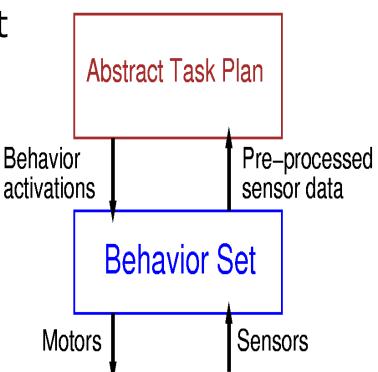

- Complex behavior can be achieved using very simple control mechanisms
  - Braitenberg vehicles: differential drive mobile robots with two light sensors



 Complex external behavior does not necessarily require a complex reasoning mechanism

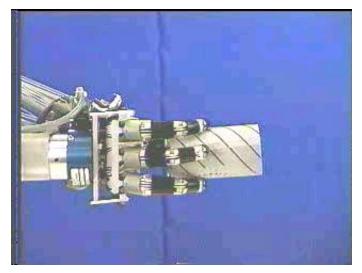
#### Behavior-Based Architectures: Subsumption Example

- Subsumption architecture is one of the earliest behavior-based architectures
  - Behaviors are arranged in a strict priority order where higher priority behaviors subsume lower priority ones as long as they are not inhibited.




### Reactive, Behavior-Based Control Architectures

- Advantages
  - Reacts fast to changes
  - Does not rely on accurate models
    - "The world is its own best model"
  - No need for replanning
- Problems
  - Difficult to anticipate what effect combinations of behaviors will have
  - Difficult to construct strategies that will achieve complex, novel tasks
  - Requires redesign of control system for new tasks


## Hybrid Control Architectures

- Hybrid architectures combine reactive control with abstract task planning
  - Abstract task planning layer
    - Deliberative decisions
    - Plans goal directed policies
  - Reactive behavior layer
    - Provides reactive actions
    - Handles sensors and actuators



## **Hybrid Control Policies**

(01000) (01001) (00101) (10000) 1100 0110 (10001 С 100 01100 C 10010 **C**\_, 001 1001: 0011 (0001 (00010) (00100



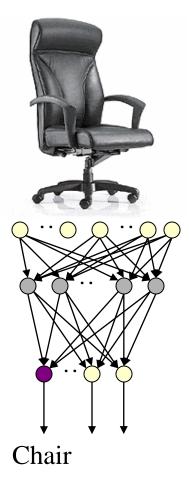
Task Plan:

Behavioral Strategy:

## Example Task: Changing a Light Bulb

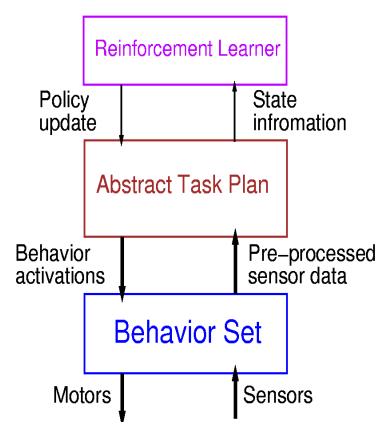


# Traditional Human-Robot Interface: Teleoperation


- Remote Teleoperation: Direct operation of the robot by the user
  - User uses a 3-D joystick or an exoskeleton to drive the robot
    - Simple to install
    - Removes user from dangerous areas
  - Problems:
    - Requires insight into the mechanism
    - Can be exhaustive
    - Easily leads to operation errors



## Learning Sensory Patterns


#### Learning to Identify Objects

- How can a particular object be recognized ?
  - Programming recognition strategies is difficult because we do not fully understand how we perform recognition
  - Learning techniques permit the robot system to form its own recognition strategy
- Supervised learning can be used by giving the robot a set of pictures and the corresponding classification
  - Neural networks
  - Decision trees



# Example: Reinforcement Learning in a Hybrid Architecture

#### Policy Acquisition Layer Learning tasks without supervision Abstract Plan Layer Learning a system model Basic state space compression Reactive Behavior Layer Initial competence and reactivity

